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Emotions and cognition are inextricably intertwined. Feelings influence thoughts 

and actions, which in turn can give rise to new emotional reactions. We claim that 

people infer emotional states in others using commonsense psychological theories 

of the interactions among emotions, cognition, and action. We present a situation 

calculus theory of emotion elicitation representing knowledge underlying com- 

monsense causal reasoning involving emotions, and show how the theory can be 

used to construct explanations for emotional states. The method for constructing 

explanations is based on the notion of abduction. This method has been imple- 

mented in a computer program called AbMaL. The results of computational ex- 

periments using AbMaL to construct explanations of examples based on cases 

taken from a diary study of emotions indicate that the abductive approach to ex- 

planotory reasoning about emotions offers significant advantages. We found that 

the majority of the diary study examples connot be explained using deduction 

alone, but they can be explained by making abjuctive inferences. These in- 

ferences provide useful information relevant to emotional states. 

1. INTRODUCTION 

Explaining people’s actions often requires reasoning about emotions. This 
is because experiences frequently give rise to emotional states, which in turn 
make some actions more likely than others. For example, if we see someone 
striking another person, we may explain the aggression as being a result of 
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anger. As well as reasoning about actions induced by emotional states, we 
can reason about emotional states themselves. In the right context, we 
might reason that a person was angry because we knew that he or she had 
been insulted. Explaining emotional states often requires reasoning about 
the cognitive antecedents of emotions. This article focuses on explanations 
of this kind. 

Although people appear to generate explanations involving emotions 
effortlessly, the question of how one might compute such explanations re- 
mains a difficult open question, just as the more general question of how to 
automate commonsense reasoning remains open. We present a computa- 
tional model of the construction of explanations of emotions. The model is 
comprised of two main components. The first component is a method for 
constructing explanations. The second component is a situation calculus 
representation of a theory of emotion elicitation. The representation of 
emotion-eliciting conditions is inspired by a theory of the cognitive struc- 
ture of emotions proposed by Ortony, Clore, and Collins (1988). In addi- 
tion to codifying a set of general rules of emotion elicitation, we have also 
codified a large collection of cases based on diary study data provided by 
Turner (1985). We have implemented a computer program that constructs 
explanations of emotions arising in these scenarios. The program constructs 
explanations using abduction. We describe the representation in some detail 
in later sections. In the remainder of the introduction, we provide some 
background information on the reasoning component, the theory of emo- 
tions, and the diary study. 

1.1 Abductive Explanation 
Our approach to constructing explanations is based on work in artificial in- 
telligence and cognitive science on computational methods employing 
Charles Sanders Peirces’s notion of abduction (Peirce, 1931-1958). Peirce 
used the term abduction as a name for a particular form of explanatory 
hypothesis generation. His description was basically: 

The surprising fact C is observed; 
But if A were true, C would be a matter of course, 
hence there is reason to suspect that A is true. 

In other words, if there is a causal or logical reason A for C, and C is 
observed, then one might conjecture that A is true in an effort to explain C. 

Since Peirce’s original formulation, many variants of this form of 
reasoning have also come to be referred to as abduction. We focus on a view 
of abduction advocated by Poole (e.g., Poole, Goebel, & Aleliunas, 1987). 
In this approach, observations 0 are explained given some background 
knowledge expressed as a logical theory T by finding some hypotheses H 
such that 

HATkO. 
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Figure 1. Inputs and Outputs of the Abduction Engine 

In other words, if the hypotheses are assumed, the observation follows by 
way of general laws and other facts given in the background knowledge. 
Consistency is also desirable so it is usually required that 

HA T It false. 

We use an abduction engine: a computer program that automatically 
constructs explanations. The explanations of observations are based on 
general background knowledge and knowledge of particular cases provided 
to the program in a machine-readable form. 

The particular abduction machinery that we use is based on an early 
approach to mechanizing abduction described in Pople (1973). The abduc- 
tion engine is part of an explanation-based learning system called AbMaL 
(Abductive Macro Learner). It is implemented in PROLOG.’ 

An input/output characterization of the program is given in Figure 1. 
AbMaL takes as input a collection of PROLOG clauses encoding theories. 
One theory represents background knowledge, another captures the facts of 
the case at hand. An observation to be explained is given as a query. 
AbMaL’s output includes an explanation of the given observation. AbMaL 
generates one explanation at a time: It will search for an alternative explana- 
tion only if the user rejects the first one found. An explanation can include 
assumptions made in order to complete the explanation. 

In addition to background knowledge, case facts, and a query, AbMaL is 
also given an operationality criterion and an assumability criterion. The 
operationality criterion is used to flag queries that should be turned over to 
the underlying PROLOG interpreter. The intuition is that AbMaL performs 
explanatory reasoning, whereas the PROLOG interpreter performs lower 
level reasoning in a more efficient manner without keeping track of ex- 
planatory relationships. Separate theories are provided: Explanatory rules 

’ PROLOG was chosen because the basic operation involved in constructing explanations, 

abductive inference, is related to backward chaining. PROLOG provides basic operations such 

as unification that are essential parts of backward chaining. 
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are used to construct explanations and nonexplanatory rules are used for 
operational inferences. The two types of rules will be distinguished in this 
article by using the symbol “- ” in explanatory rules and the symbol 
‘: -3, in nonexplanatory rules (implemented as PROLOG clauses). 

The assumability criterion determines whether a hypothesis (a query that 
could not be proved or disproved) may be assumed. The query may or may 
not be operational2 

A simplified sketch of the procedure followed by the abduction engine is 
shown in Figure 2.” The abduction engine attempts to construct explanations 
of given observations using general laws and specific facts. In the imple- 
mentation, explanations are proofs represented as AND trees. Observations 
to be explained correspond to conclusions of the proofs (roots of the trees). 
General laws are encoded as rules and these are used to generate the proofs 
through a process based upon backward chaining. 

The mechanization of abduction is comprised of three steps (Figure 2). 
The first step corresponds to backward chaining as it is implemented in 
PROLOG interpreters. The observation is treated as a query. Initially, there 
is only one query but, in general, there may be a number of open questions 
in the query list Q. The search process attempts to ground the explanation 
tree in known facts. If a query is operational, AbMaL attempts to identify it 
with a fact in the database or in its deductive closure. In attempting to prove 
operational queries, AbMaL does not keep track of an explanation and it 
does not use “explanatory” clauses. However, it does allow for the possibil- 
ity that a query may be operational and/or provable in several ways. If one 
operationalization of the query fails to pan out, backtracking is used to 
search for another. If the query is not operational, or no direct operational 
explanation is possible, then explanatory rules may be used to extend the 
partial explanation, replacing existing queries with new queries. Before 
queries are allowed to generate new queries in this manner, a test is applied 
and those deemed inadmissible are disallowed. Several explanatory rules 
may apply to a single query. In this case, the alternatives are tried if the first 
rule fails to lead to an explanation. 

The second step begins when backward chaining fails. This “identifica- 
tion” or “merging” step is based on the synthesis operator advocated by 
Pople (1973) and justified by him in terms of Occam’s razor. In this step, 
the remaining unexplained queries are examined and some of them are 
assumed to be “the same” (identical in the sense that they are coreferential 

* Assumptions involving operational hypotheses are allowed (see the example in Section 
3.2). 

3 For more details of the explanation system, see O’Rorke (in press). That article focuses on 
abduction and explanation-based learning and on lessons learned in case studies involving 
several other domains. 
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statements). The idea is that some of the open questions may actually be the 
same question even though they may have been generated by separate lines 
of inquiry. Merging them simplifies explanations, reduces the number of 
assumptions that must be made, and increases the plausibility of the expla- 
nation. Another advantage is that identification assumptions often introduce 
new information. The identification of two previously unrelated statements 
in different parts of an explanation often causes sharing of information 
between the separate branches of the explanation. In the implementation, 
statements are identified by unifying two well-formed formulae. This can 
cause variables in both formulae to take on new bindings. The new bindings 
then propagate to other statements that share the same variables. 

Merging is implemented using unification. In terms of Figure 2, at the 
beginning of this stage Q is the empty list, (I is a non-nil list of unexplained 
statements, and the explanation is incomplete. The algorithm continues by 
first selecting an arbitrary unexplained statement u from U. If u can be 
identified (unified) with any other statement in U, then the pair is replaced 
in U with their identification. The identification step ends when no more 
queries in U are pairwise identifiable. Unlike the previous step, this step is 
not deductively sound. The assumption that corresponding variables men- 
tioned in merged queries refer to the same individual may be incorrect. 
When erroneous assumptions of this type are detected at explanation time, 
they are recoverable through backtracking. 

The third abduction step tests whether remaining queries can be 
assumed. The queries are tested to ensure that they are not known to be true 
(or false). Nonexplanatory theorem proving is allowed in testing whether a 
hypothesis is known to be true. AbMaL calls PROLOG and if the hypothe- 
sis is proven true, then it is not allowed as an assumption. A test against 
stored negative assertions is used to determine whether a hypothesis is false 
(we do not use negation as failure). This test is a limited form of the con- 
sistency check called for in the formal specification of abduction. Together, 
these two tests ensure that a hypothesis is not known true or false. Next, an 
“assumability” test is used to decide whether to assume that a hypothesis is 
true. The test includes a domain-independent component and a hook that 
takes advantage of domain-dependent information about admissible 
hypotheses. This test is applied to each of the queries u in list U. If u is not 
assumable, then the current attempt to find an explanation is aborted and 
backtracking is invoked’ in order to continue the search for acceptable 
explanations. 

Like all methods for constructing explanations, the one just described 
can spend substantial time searching large spaces of potential explanations. 
The amount of computation required depends on the domain, the task, and 
the specific problem at hand. One aspect of the method that favors efficiency 

4 The most recent choice that may be changed is the choice of goals merged in “identication.” 
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is that it does not attempt to compute multiple candidates simultaneously. It 
does not try to find all possible explanations, it only tries for one. Even so, 
the depth-first search tends to run away. We keep this tendency in check using 
depth bounds. We also use other forms of search control that take advantage 
of both general and domain-specific information. Tests for admissibility are 
applied to reject inadmissible queries and hypotheses arising in partial ex- 
planations. With these constraints on search, the algorithm finds explana- 
tions for most examples in a few seconds.’ 

1.2 A Theory of Emotions 
The theory of the cognitive structure of emotions employed in the research 
we describe views emotions as valenced reactions to events, agents and their 
actions, and objects. It specifies a total of 22 emotion types summarized in 
an abbreviated form in Table 1. We provide only a brief sketch here. A full 
description can be found in Ortony, Clore, and Collins (1988). 

The emotion types are essentially just classes of eliciting conditions, but 
each emotion type is labeled with a word or phrase, generally an English 
emotion word corresponding to a relatively neutral example of an emotion 
fitting the type. The simplest emotions are the well-being emotions joy and 
distress. These are an individual’s positive and negative reactions to 
desirable or undesirable events. 

The fortunes-of-others group covers four emotion types: happy-for, 
gloating, resentment, and sorry-for. Each type in this group is a combina- 
tion of pleasure or displeasure over an event further specialized as being 
presumed to be desirable or undesirable for another person. 

The prospect-based group includes six emotion types: hope, satisfaction, 
relief, fear, fears-confirmed, and disappointment. Each type is a reaction to 
a desirable or undesirable event that is still pending or that has been con- 
firmed or disconfirmed. 

The attribution group covers four types: pride, admiration, shame, and 
reproach. Each attribution emotion type is a (positive or negative) reaction 
to either one’s own or another’s action. 

The attraction group is a structureless group of reactions to objects. The 
two emotions in this group are the momentary feelings (as opposed to stable 
dispositions) of liking or disliking. 

The final group is comprised of four compounds of well being x attribu- 
tion emotion types. These compound emotions do not correspond to the co- 
occurrence of their component emotions. Rather, each compound’s eliciting 
conditions are the union of the component’s eliciting conditions. For exam- 
ple, the eliciting conditions for anger combine the eliciting conditions for 
reproach with those for distress. 

’ The examples run in LPA MacPROLOG on a MacIIci. 
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Group 

Well-being 

Fortunes-of-others 

Prospect-based 

Attribution 

TABLE 1 

Emotion Types 

Specification 

Appraisal of event 

Presumed value of 

on event affecting 

another 

Appraisal of a 

prospective event 

Appraisal of an 

agent’s action 

Types (name) 

pleased (ioy) 

displeased (distress) 

pleased about an event desirable 

for another (happy-for) 

pleased about on event undesirable 

for another (gloating) 

displeased about an event desirable 

for another (resentment) 

displeased about on event 

undesirable for onother (sorry for) 

pleosed about o prospective 

desirable event (hope) 

pleosed about o confirmed desirable 

event fsotisfaction) 

pleased about a disconfirmed 

undesirable event (relief) 

displeased about a prospective 

undesirable event (fear) 

displeased about u confirmed 

undesirable event (fears-confirmed) 

displeased aobut a disconfirmed 

desirable event (disap~intment) 

opproving of one’s own action (pride) 

opprovrng of onother’s action 

(admiration) 

disapproving of one‘s own action 

(shome) 

disapproving of another’s action 

(reproach) 

Attraction 

Well-being/ 

Attribution 

Appraisal of on 

object 

Compound emotions 

liking an appealing object (love) 

disliking on unappealing object (hate) 

admirotion + joy-gratitude 

reproach + distress-onger 

pride + joy-grotificotion 

shome + distress- remorse 

In general, ehciting conditions are specified in terms of variables that 
contribute toward increasing the intensity of emotions. The theory specifies 
global variables that affect all emotions, and local variables that affect 
subsets of emotions. The variables have values and weights associated with 
them, and the theory claims that an emotion is experienced only when cer- 
tain levels, the emotion thresholds, are exceeded. 

For anger, the variables affecting intensity are: 
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. the degree of judged blameworthiness; 
l the degree of deviation from personal or role-based expectations, and 
. the degree to which the event is undesirable. 

The first variable, blameworthiness, is the evaluation of an action against 
the standards of the judger, The second variable, deviations from expecta- 
tions, gauges the extent to which the action is unexpected of the agent. The 
third variable reflects an evaluation of the event (perpetrated by the agent) 
in terms of its impact upon personal goals. 

1.3 A Diary Study of Emotions 
We use data taken from a diary study of emotions (Turner, 1985) as the 
source of examples. Most of the subjects who participated in the study were 
sophomores at the University of Illinois at Champ~gn-Urbana. They were 
asked to describe emotional experiences that occurred within the previous 
24 hours. They typed answers to a computerized questionnaire containing 
questions about which emotion they felt, the event giving rise to the emo- 
tion, the people involved, the goals affected, and so on. Over 1,000 descrip- 
tions of emotion episodes were collected, compiled, and recorded on 
magnetic media. 

We chose to use this diary study as a source of examples because, 
although nearly every emotion type is represented, the situations and events 
described in the entries tend to cluster into a relatively small number of 
stereotypical scenarios. This is a natural consequence of the importance of 
examinations, dating, and so on, in the emotional lives of undergraduate 
students. We were thus able to focus on aspects of the theory and computa- 
tional model most relevant to emotions, rather than being distracted by 
problems having to do with representing a wide range of domain-specific 
knowledge. 

2. A SITUATION CALCULUS THEORY 
OF EMOTION ELICITATION 

In this section, we describe a representation language designed to support 
the construction of explanations involving emotions. The language is based 
on work on two major contributions to knowledge representation, the situa- 
tion calculus (Mc~hy, 1968) and conceptual dependency (Schank, 1972). 

Before we proceed, a few words on methodology may be in order. We 
use logic-based methods for reasoning and for representing knowledge in 
this article. There is some controversy over methodological issues associated 
with whether and how to use logic in artificial intelligence. The logicist ap- 
proach is presented in Genesereth and Nilsson (1987) and the use of logic in 
representing commonsense knowledge is discussed in Davis (1990). Good 
examples of debates about the role of logic are McDermott (1987), Nilsson 
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(1991), and Birnbaum (1991). We use logic in this article in an attempt to 
make the presentation of the relevant commonsense knowledge and infer- 
ence techniques clear, complete, and comprehensible. However, the use of 
logic-based representations and reasoning methods in this article does not 
represent a commitment on our part to logicism. Charniak’s (1987) quip 
also applies to us: we are not now, nor have we ever been, logicists. 

2.1 Situation Calculus 
The situation calculus provides us with a language for expressing causal 
laws relating actions and physical situations. This first-order logical lan- 
guage was originally invented by McCarthy (1968, 1977). We employ a ver- 
sion of the situation calculus incorporating improvements by Green (1969), 
McCarthy and Hayes (19691, Fikes and Nilsson (1971), Kowalski (1979), 
and Reiter (1991). 

Situations are represented by terms. Pluents are statements that may or 
may not be true in a given situation. The negation of a fluent F is (also) a 
fluent. Partial descriptions of the state of affairs in a given situation S state 
that fluents such as P hold in S: holds(P, s). 

Actions are functions that map situations representing the state of the 
world before the execution of the action into situations representing the 
state of the world afterward. The situation resulting from applying action A 

to state S is designated by the term do(A, S). We treat the negation of an 
action A the same as the action of not executing A. 

A number of examples that we have studied suggest that people do not 
make a strong distinction between actions and fluents in the sense that they 
often want an action to be done without focusing on any explicit effect 
caused by the action. Actions that are done for their own sake because they 
are intrinsi~~ly enjoyable rather than to achieve other goals are good ex- 
amples (e.g., chatting on the phone, skiing, watching one’s favorite sports 
team). In response to this observation, we introduced a function did that 
maps actions to fluents and we added a causal law relating corresponding 
actions and fluents: 

The intuition behind this fluent for actions is that, if nothing else, doing an 
action at least causes it to be done. [If action A is executed in situation S, 
then it causes the fluent did(A) to be true in the resulting situation.] This law 
allows us to refer to actions through fluents and not just as mappings between 
situations. This is useful for actions that are done for their own sake but 
more generally, the did fluent is useful whenever we do not wish to focus on 
a specific effect of an action but rather on the action itself. The importance 
of this extension in reasoning about emotions is discussed in Section 4.3. 

Actions are defined by specifying their preconditions and effects. Pre- 
conditions are divided into action and~~~e~~ preconditions following Reiter 
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(1991). Action preconditions are fluents that imply that the action is possi- 
ble in a given situation. Fluent preconditions imply that individual effects 
follow upon execution of an action. 

The fact that an action A is possible in a situation S is represented as 
poss(A, 3). If PI and P,, are action preconditions for doing A, this is 
represented: 

P0S.w s) - ~o~~~P,, s) A.. .A holds (P,, S). 

The effects of actions are represented using something like the “add” 
and “delete” statements of STRIPS (Fikes & Nilsson, 1971). These state- 
ments specify fluents added or deleted upon execution of an action. Both 
positive and negative effects are encoded in conditional “cause” statements 
of the form: 

came@, F, Sl - hold&F,, s) A . . .A hoZds (Fn, S). 

where each Fi is a fluent condition for action A causing fluent Fin situation 
S. Positive and negative effects are inferred through the following law of 
direct effects: 

h~~d~F, do(A, 5’)) - cmses(A, F, s) iz poss(A, 5’). 

This law states that a fluent holds in the situation resulting from the execu- 
tion of an action if the action was possible to begin with and if the action 
causes the fluent. 

Our “causes” statements are similar to the “causal associations” of 
Peng and Reggia (1990) as opposed to their “causation events.” A causal 
association specifies a possible causal relationship whereas a causation 
event is said to hold iff both the cause and the effect hold and the effect is 
actually caused by the cause. Our statements and rules involving “causes” 
only capture associations between actions and their effects and the fluent 
preconditions under which the action, if executed, would lead to the effects. 
The action preconditions still must be satisfied in order for the action to be 
possible and actually cause the relevant effect. 

Frame axioms state that nothing changes unless it is explicitly stated that 
it changes as a result of some action. We use the following frame axiom 
schema: 

holds(F, &(A, S)) - causes(A, zi, 5’) n hoids(P, S) A poss(A, s>. 

This frame axiom states that the fluent P will hold after execution of an 
action if it held before and the action did not cancel it6 

’ In our implementation, queries of the form not P are considered to be operational, so the 
explanatory machinery turns not(cuuses (A, not P, s)) over to PROLOG, which attempts to 
show that carrses@l, not P, 5’). If the attempt to prove this goal fails, negation as fiiiture is used 
to “prove” the negation. Attempts to prove cause&A, not P, S’) can match this literal against 
facts and rules about causes. 
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The advantage of the frame axiom we have adapted is that there is no 
need to have a separate frame axiom for every relation. Instead one only 
needs a single frame axiom. Kowalski (1979) pointed out that earlier ver- 
sions of frame axioms can be had by forming macros from the very general 
frame axiom and specific statements about what is deleted.’ 

We provided the operational metalevel predicates agent, precedes, and 
~reco~~~~~o~. They express important constraints and help to control in- 
ference. The ageM predicate is used to identify or extract the agent of a 
given action. The precedes predicate applies to two arguments: 

precedes[S, &(A, s)]. 

The situation S precedes the situation resulting from the execution of action 
A in situation S. The situation SC precedes the result of doing A in S if it 
precedes S: 

precedes&, do(A, s)] :-precedes(S,, S’). 

These rules give sufficient conditions for one situation to precede another.8 
The precondition predicate applies to two arguments, an action and a 
fluent: 

precondi#ion(A, CT). 

This statement is true if C is an action precondition of A. To determine 
whether it is true, domain-level rules about when actions are possible are 
consulted. To be exact, precondition(A, C) is true if the system finds an 
explanatory clause with a conclusion of the formposs(A, 5’) and a condition 
of the form holds(C, S’). 

The following general laws facilitate reasoning about goals: 

want@‘, did(A), SJ - causes(A, F, s) A dtyfF, did(A)] A wants(P, F, s); 

wants(P, F, s) - preco~dj~io~(A, F) A causes[A, G, s) A wants(P, G, S). 

The first rule states that a person may want an action to be done if some ef- 
fect caused by the action is desired. Note the use of the operational 
metapredicate diff, which ensures that the effect of the action A is different 
from did(A). (This is needed here in order to avoid useless recursion.) The 
second statement allows for the fact that an action may be directed at satis- 
fying goals that contribute to the eventual achievement of longer term 
goals. In particular, a person may want a fluent to hbm if it is a precondi- 
tion of an action that causes another desired fluent. 

’ Interestingly, this can be done by explanation-based learning (DeJong & Mouney, 1986; 
Mitchell, Keller, & Kedar-Cabelli, 1986). 

8 This amounts to something like an induction schema for the precedes relation. Because 
assumptions about this relation are disallowed (see Section 2.4), negation as failure ensures 
that only the instances covered by these rules are allowed. 
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2.2 Conceptual Dependency 
Primitive actions provided by conceptual dependency @trans, move, 
atrans, propel, grasp, ingest, expel, tntrans, and attend) are encoded in our 
situation calculus representation as functions mapping situations and CD 
roles such as “agent” into new situations. Variants of the functional 
representations are used when the value of some argument is unknown or 
unimportant. 

For example, the function atrans is used to represent transfers of owner- 
ship. The most explicit form of atrans has arguments for the agent responsi- 
ble for the transaction, the object in question, the new owner, and the 
previous owner. In many cases, the previous owner is the agent. We use a 
three-argument version of atrans in such cases. A two-argument version is 
used when the agent is the recipient and the previous owner is irrelevant. 

We show how knowledge about actions is encoded using an example of 
ptrans.It is possible for an agent P to move an object T from one location 
From to a destination To if the thing T is initially at the location From: 

poss(ptrans(P, To, From, T), s) - hoIds(at(T, From), S’). 

This is an example of an action precondition. The effects of ptrans are 
encoded as follows. A physical transfer of a thing T to a destination To 
causes the thing to be at the destination: 

causes(ptrans(P, To, From, T), at(T, To), S’). 

This is a positive effect of the transfer. A negative effect is that the thing is 
no longer at its original location: 

causes(ptrans(P, To, From, T), at(T, From), S) :-diff(To, From). 

Whereas the positive effect is unconditional, the negative effect has a fluent 
precondition in this formulation of ptrans. The operational metapredicate 
diff is used to ensure that the destination and origin are different locations. 
This predicate uses PROLOG to ensure that its two arguments cannot be 
unified. Note that the predicate “causes” should be interpreted with care 
(see the discussion of “causal associations” vs. “causation events” in Sec- 
tion 2.1). For example, causes[ptrans(P, D, F, 7’), at(T, D), s] may be true 
even when holds[at(T, I$ s], and poss[ptrans(P, D, F, 7’), s] are false so 
that do[ptrans(P, D, F, T), s] is impossible. 

Additional actions required by the examples that we have encoded include 
abuse, attack, breakup, call, close, die, excel, fight, gossip, hurt, insult, 
kill, open, and score. Preconditions and effects of actions are encoded using 
fluents such as alive, dead, did, have, rested, single,and unfaithful. These 
actions and their preconditions and effects are represented using general 
laws similar to those shown previously in the example of ptrans. 



296 O’RORKE AND ORTONY 

2.3 Emotion-Eliciting Conditions 
Eliciting conditions for emotions are encoded in a collection of rules for all 
emotion types except likes and dislikes. The rules are an initial attempt to 
represent the emotion-eliciting conditions proposed by Ortony et al. (1988), 
and sketched in Section 1.2. The elicitation rules correspond to explanatory 
rules in the computations implementation.9 Simplif~ng assumptions and 
limitations of this initial representation are discussed in Section 4.4. We pre- 
sent the rules in pairs corresponding to complementary emotions. 

People may experience joy over a fluentlo in a situation if they want it 
and it holds, but they may experience distress if they want a fluent that 
holds not to hold: 

joy(P, F, s) - ~ant~P, F, S) A ho~ds~F, S); 

distress(P, F, s) - wants(P, F, s) A holds(F, s). 

A person may experience neither joy nor distress in the event that a fluent 
holds, if he or she desires neither the fluent nor its negation. Even if we 
grant the law of the excluded middle for a fluent, it is still possible that a 
person is indifferent to it. 

A person may be happy for another if he or she experiences joy over a 
fluent presumed to be desirable for the other. We express this in terms of 
joy over the other’s joy: 

happy._for(P,, P2, F, s) - joy[P,, joW2, F, SO), Xl. 

Note that the desire for the fluent is implicit in the embedded joy. Although 
the rule does not encode the fact that a person is usually happy for another 
before or while the other is happy, the rule does reflect the fact that they 
may be happy in different situations (at different times). 

A person may be sorry for another if he or she experiences distress over a 
fluent presumably undesirable for the other. We express this in terms of 
distress over the other’s distress: 

sorry- for(P,, P2, F, S) - distress[P,, distress(P2, F, SO), S’J , 

The undesirability of the fluent is implicit in the embedded distress. The two 
people may be distressed in different situations and no temporal constraints 
are placed on these situations in the present formalization. 

p For the distinction between explanatory and nonexplanatory rules, see Section 1. I. 
lo Note that in this formalization of the theory sketched in Table 2 fluents are used in place 

of events. In many cases, emotional reactions to events are actual reactions to effects of the 
events, rather than to the event itself. Even when the focus is on an event, we can cover this 
case by representing the fact that the event occurred as a fluent. For example, in the case of ac- 
tions we use Ruents of the form did(acrion). 
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A person may gloat over a fluent that gives them joy that (they believe) is 
not wanted by another. We express this in terms of joy over another’s 
distress: 

gloats(P,, P,, F, s) - joy[P,, distress(P,, F, SO), Sl. 

People may resent another person if they are distressed about an event that 
pleases the other person. We express this in terms of distress over another’s 
joy: 

resents(P,, P,, F, 5’) - distress[P,, ~oy(P?, F, SO), SJ. 

Again, the desirability of the event for the other is implicit in the embedded 
distress and joy and we currently do not require any particular temporal 
order for the relevant situations. 

The hopes rule captures the idea that people may experience hope if they 
want a fluent and anticipate it: 

hopes(P, F, 5’) - wants(P, F, S) A anticipates(P, F, 5’). 

People may experience fear if they want an anticipated fluent not to obtain: 

fears(P, F, S) - wants(P, F, S) A anticipates(P, F, S). 

These rules allow for hopes and fears even if, unknown to the person, the 
hoped-for or feared fluent in fact already holds. 

Although many examples of hopes and fears involve expectations, we use 
the predicate anticipates in order to suggest the notion of “entertaining the 
prospect of” a state of affairs. The purpose of this is to avoid suggesting 
that hoped-for and feared events necessarily have a high subjective proba- 
bility. We also want to avoid suggesting that they always occur in the future. 

Satisfaction occurs when a hoped-for fluent holds: 

satisfied(P, F, S) - precedes(& S) A hopes(P, F, So) A holds(F, S). 

Fears are confirmed when feared fluents hold: 

fears_confirmed(P, F, S) - precedes(S, 5’) A fears(P, F, SO) A holds(F, s). 

We require the fear to precede its confirmation and we expect the hope to 
occur before it is satisfied. 

Relief may be experienced when the negation of a feared fluent holds: 

relieved(P, F, s) - precedes(& S) A fears(P, F, S,,) A holds@, S); 

relieved(P, F, 5’) - fears(P, F, So) A holds@, S). 

We give two rules for relief because fear usually occurs before the fluent 
holds, but sometimes relief occurs in the absence of prior fear (as when a 
person discovers that a missed flight crashed). 
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Disappointment occurs when the negation of a hoped-for fluent holds: 

disappointed(P, p, S) - precede@, S) A hopes(P, F, SO) A hold@, 5). 

disappo~nted(P, F, S) - ~opes(P, F, S,) A hoIds(~, 5’). 

The fluent is usually hoped-for in a situation that occurs in advance of the 
present situation but disappointment (e.g., at a missed opportunity) may 
occur in the absence of prior hope. 

Pride and shame can occur for individuals or groups. An agent experi- 
ences pride over praiseworthy actions executed either by the agent or by 
another member of a “cognitive unit” (Heider, 1958) containing the agent. 
Agents may experience shame if they do a blameworthy act or if another 
member of their cognitive unit does a blameworthy act: 

proud(P, A, s) - agent(A, P) A ho~ds~did(A), s] A pr~~se~o~thy~A); 

proud(P,, PE, A, s) - agent(A, Pt) f\ ho~ds[djd(A), 4 A praiseworthy(A~ 
. . 

A cognltlve__unit(P, , P,); 

shame(P, A, S) - agent(A, P) A holds[did(A), S’j A blameworthy(A); 

shume~P,, P2, A, SJ - ugent(A, P2) A ho~ds[did(A), SJ A ~~ame~orthy~A~ 
A cognitive_unii(P,, Pl). 

The predicates ~ru~se~o~thy and blameworthy are intended to reflect per- 
sonal standards rather than normative or social standards, except insofar as 
the judging person subscribes to such standards. 

A person may admire another person if the other person does something 
praiseworthy, but a person may feel reproach toward another if the other 
does something blameworthy: 

admire(P, , P2, A, s) - agent(A, P2) A hoZds[did(A), s] A praiseworthy(A); 

reproac~~p,, PI, A, S) - agent(A, P2) A ho~ds[d~d(A~, Sj A blameworthy. 

Compound emotion types are comprised of the eliciting conditions of 
components taken from the well-being and attribution groups. We do not 
include the component emotions in the eliciting conditions in order to avoid 
suggesting that the component emotions are necessarily felt as part of feel- 
ing the compound. Instead, we collect the eliciting conditions of the com- 
ponents and simplify them, eliminating redundancies. 

Gratitude is a compound of the eliciting conditions of joy and admira- 
tion. A person may be grateful toward another person if the other person 
does a praiseworthy action that causes a desirable fluent to hold: 

gratefu/(P,, P2, A, S,) - ugent(A, Pt) A holds[did(A), $1 A precedes& SJ 
A cuuses(A, F, S,) A praiseworthy(A) A wants(P,, F, S,) A holds(F, S,). 

The angry_at emotion type focuses on anger at other agents. It is a com- 
pound comprised of the eliciting conditions of reproach and distress. A 
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person may be angry at another if an undesirable fluent is caused by a 
blameworthy action taken by the other person: 

angry_at(P,, P2, A, Sl) - agent@, P2) A holds[did(A), S,] A precedes& S,) 
A cuuses(A, F, SO) A bfumeworthy(A) A wunts(P,, F, S,) A holds(F, S,). 

We distinguish this from angry about, which because it focuses on the un- 
desirability of the situation, is better thought of as a special case of distress: 
frustration (typically at goal blockage). 

Gratification is a compound emotion comprised of the eliciting condi- 
tions of pride and joy. A person may be gratified if he or she does a praise- 
worthy action that results in a desirable fluent: 

grutified(P, A, S,) - ugenf(A, P,) A holds[did(A), S,] A precedes($, S,) 
A cuuses(A, F, SO) A wunts(P, F, S,) A holds(F, S,) A praiseworthy(A); 

gratified(P,, Pz, A, S,) - ugent(A, PJ A holds[did(A), S,] A precedes(S,, S,) 
A cuuses(A, F, SO) A cognitive_unit(P,, P2) A wunfs(P,, F, S,) 

A holds(F, S,) A praiseworthy(A). 

Because there is a cognitive unit variant of pride, there is also a variant of 
gratification. This variant of gratified is closely related to grateful. 

Remorse is a compound emotion comprised of the eliciting conditions of 
shame and distress. People may be remorseful if they do a blameworthy 
action that results in an undesirable fluent: 

remorsefuI(P, A, S,) - ugent(A, P2) A holds[did(A), S,] A precedes& S,) 

A cuuses(A, F, S,) A wunts(P,, i? S,) A holds(F, S,) A blameworthy(A); 

remorsefui(P,, P,, A, S,) - ugent(A, S) A hofds[did(A), S,] A precedes& S,) 
A cuuses(A, F, So) A cognitive_unit(P,, P,) A wunts(P,, F, S,) 
A hoIds(F, S,) A blameworthy(A); 

The second rule here provides the eliciting conditions of a cognitive-unit 
variant of remorseful. These conditions are derived from the corresponding 
variant of shame. This variant is closely related to angry-at. 

The eliciting conditions given in this section represent a first attempt at 
formalizing necessary, but not necessarily sufficient, conditions for the 
elicitation of the corresponding emotions. (This is why we say “a person 
may experience emotion x under conditions y.“) In some cases, additional 
conditions may be required to capture more fully commonsense knowledge 
about emotion elicitation. It may be that a person’s disposition towards 
another person should play a role in explaining the elicitation of “fortunes 
of others” emotions. For example, perhaps the eliciting conditions of hap- 
pyfor should include a requirement that a person may be happy for 
another if that person does not dislike the other. 

Cognitive units play an important role in some emotions and are provided 
for in the situation calculus theory of emotions. A special predicate is used 
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for cognitive units in the eliciting conditions of the attribution emotions 
pride and shame. This predicate is also used in the given “background 
knowledge” to encode groups that may form cognitive units. This is an 
attempt to capture the idea that people can form (relatively stable) cognitive 
units with their family members and close friends. 

Studies of a number of examples suggest that many goals are shared by 
members of the same cognitive unit. People want good things to happen not 
just to themselves but also to others in their cognitive unit. They want to 
avoid bad things and they do not want bad things to happen to others in 
their cognitive unit. For example, everyone wants to excel, and they want 
people in their cognitive unit to excel, too. People generally do not want to 
experience harm, and they do not want other members of their group to be 
harmed either. This sort of general law is represented using conditional 
wants: 

wunts[P, harmed(Q)] - cognitive_unit(P, Q). 

2.4 Finding Plausible Explanations of Emotions Efficiently 
In this section, we describe three additional sources of knowledge that con- 
tribute to efficiency. The first source, the assumability criterion, specifies 
which queries are admissible as hypotheses. The second source, the opera- 
tionality criterion, specifies which queries can be answered without explana- 
tion. The third source, a set of rewrite rules, specifies transformations that 
map alternative representations into a canonical form. In addition to im- 
proving efficiency, these three knowledge sources also help limit the search 
for explanations for emotions to plausible candidates. 

In general, many explanations are possible and it is important to constrain 
the search to avoid large numbers of implausible hypotheses and explana- 
tions. In early experiments without constraints we found that the abduction 
engine conjectured large numbers of implausible causal relationships. This 
problem was addressed by disallowing assumptions involving metapredicates 
like diff and instances of the following: 

preconditions(A, F); 

causes(A, F, s). 

In other words, the abduction engine was not allowed to assume arbitrary 
preconditions for actions, nor was it allowed to assume unprovable causal 
relationships between actions and effects. 

The operationality criterion provides a second source of knowledge that 
enables efficient recognition of the truth or falsity of queries. Operational 
queries can be answered relatively efficiently because they do not involve 
the additional overhead associated with constructing explanations. Such 
queries are turned over to the base-level interpreter (PROLOG). In most 
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cases, they are answered by simply attempting to find a matching statement 
in the database, although in general backward chaining is allowed. The 
following predicates are considered to be operational: 

@.X-X Y); 
member(X, Y); 
opposite(X, Y)’ 

action(X); 
precondition(A, CT); 

agent(A, P); 
precede@, , S2); 

cognitive_unit(P, Q); 
hlikes(P, Q) . 

We assume that no explanatory reasoning is involved in answering these 
queries. For example, the dispositional attitude d-likes is operational 
because we assume that likes and dislikes are not explainable. In addition to 
these predicates, simple queries present in the database as facts are also con- 
sidered to be operational. 

Rewrite rules enable the system to recognize alternative ways of repre- 
senting the same expression. For example, since the negation of doing an 
action is considered to be identical to the execution of the negation of that 
action, the term dw) is considered to be an alias for do(X). At key points 
in the computation, the system uses rewrite rules to transform such expres- 
sions into a canonical form. Note that this use of canonical forms does not 
put us in danger of subscribing to Woods’s (1975) “canonical form myth.” 
Woods pointed out that it is provably impossible to find canonical form 
functions for many formal systems and that such functions should not be 
expected to map all internal representations of sentences with the same 
“meaning” into a single canonical form. But our rewrite rules do not carry 
much inferential burden; instead, they provide representational flexibility. 

This allows us to use two ways of associating fluents and situations. One 
advantage of the holds relation introduced by Kowalski (1979) is that it 
avoids the need for an extra state parameter for all relations. The disadvan- 
tage of the use of holds (as opposed to including extra arguments for situa- 
tions) is that it requires an extra predicate in the sense that it requires us to 
embed fluents in holds statements. Besides being aesthetically undesirable in 
some situations, the use of holds can increase the branching factor of some 
explanatory searches because facts and clauses tend to be indexed and 
fetched by the top-level predicate. Sometimes it is more convenient to use 
situations as arguments of fluents. In other cases, it is preferable to 
associate fluents with situations using the holds predicate. The rewrite rules 
listed here facilitate explanations involving chains of fluents by linking 
equivalent representations: 
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holdsIF(Arg4, sl =+ Wrgs, 8; 
hofds{holds[F(Args), S,], $1 j holds[F(Args), S,]; 

holds[F(Args, S,), S,] =+ E(Args, St). 

The first rule establishes the equivalence between a fluent with a situation as 
an argument and the corresponding situationless fluent holding in the same 
situation. The second rule “unwraps” embedded holds statements. The 
truth of a holds statement depends only on the situation it applies to. The 
third rule is a consequence of the first two. 

In the emotion-eliciting conditions, the emotion types occurring in the 
heads of the rules are expressed as fluents with situational arguments. The 
bodies of the rules contain golds statements whose ~guments are fluents 
eliciting emotional reactions. It is important to ensure that the alternative 
representations are viewed as equivalent so that inferences are not lost. We 
enforce the equivalence by mapping complex representations to relatively 
simple canonical forms using rewrite rules. This facilitates explanations in- 
volving emotional chains (as shown in Sections 3.2 and 4.3). 

3. EXPLAINING EMOTIONS 

In this section, we show how our situation calculus representation of emo- 
tion elicitation can be used to explain emotional states. We describe the pro- 
cess of codifying examples. We show how explanations are produced by the 
abduction engine sketched earlier. We provide assumptions and explana- 
tions produced by the computer program and show how its outputs are in- 
terpreted. The examples discussed in this section were chosen to show some 
of the breadth of the reasoning and representation methods. In a later sec- 
tion, we will use these examples to illustrate strengths and weaknesses of the 
methods. 

3.1 An explanation for Joy 
The first example is based on the following “case,” a simplified version of a 
scenario taken from Turner’s (1985) diary study: 

Mary went home to see her family. 
She ate a home-cooked meal. 
She wanted to stay home. 
Mary was happy. 

We hand-coded the case into the inputs shown in Figure 3. The first input 
states that Mary wants to be home in the situation that follows after she 
went home and ingested a home-cooked meal. Abbreviations at the bottom 
of the table are used for the relevant situations. Note that this codification 
of the example is crude in the sense that we have not atempted to capture 
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much of the information associated with Mary visiting her family. The 
underscores and the use of a constant for “home_cooked_meal” also 
signify simplification aimed at avoiding having to deal with issues related to 
quality of food and different methods of food preparation. Such subtleties 
are lost. We strive only to capture basic facts of the case. The case specifies 
that Mary is happy in a situation following certain actions. It specifies that 
she wants to be at home in this situation but it does not specify the fluent 
that she is happy about. In the query about why Mary is experiencing joy, 
the situation is specified but the fluent is left blank (using a “don’t care” 
variable designated in PROLOG as an underscore “_“). 

Figure 3 also shows an explanation produced by the abduction engine. 
The explanation is in the form of a tree. The first line is the root of the tree; 
indented lines are branches. The first level of indentation shows the 
propositions immediately supporting the root. The second level of indenta- 
tion shows their supporters, and so on. The deepest levels of indentation 
correspond to leaves of branches of the explanation tree. 

This explanation for Mary’s happiness is interpreted as follows. In the 
first line, we see that the fluent she is happy about has been identified as the 
fact that she is at home in the given situation. Mary’s location prior to going 
home was not specified in the given case fact and neither is it determined 
during the construction of the explanation. Her joy is supported by the 
second line, which was part of the input. A case fact stating that Mary 
wanted to be at home was given. The fat that she is at home is explained by 
the remainder of the tree. Mary is a home because she went there and the 
fact that she ingested a meal did nothing to cancel this result. The explana- 
tion that Mary is at home after she ate the meal rests on an assumption that 
it was possible to eat because she had it after she went home. Abductive in- 
ferences (assumptions) are distinguished from leaves of explanation trees 
that are known to be true by enclosing them in boxes as in Figure 3. 

The explanation was constructed bythe abduction engine using the situa- 
tion calculus theory of emotion elicitation described earlier. The system is 
not allowed to explain the initial query (why was Mary happy?) directly, 
even though it is a known fact. Instead, it finds reasons by backward chain- 
ing on rules of situation calculus and emotion elicitation rules. In this case, 
the rule specifying the eliciting conditions for joy applied. Backward chain- 
ing on this rule generated two new queries: Does Mary want something- 
something that holds in the given situation? A given case fact stated that 
Mary wants to be at home. This fact was used to “ground out” one of the 
queries. The query about how the desired state of affairs came to pass (how 
Mary came to be at home) was answered by backward chaining on a law of 
situation calculus. The frame axiom stating that effects of earlier actions 
persist unless canceled by later actions was applied to infer that Mary was at 
home because she went there earlier and nothing she did in the meantime 
canceled this effect. Most of the remaining queries grounded out in known 
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facts provided as facts of situation calculus and conceptual dependency 
(e.g., Mary was at home because she did aptrans and physically transferred 
herself home). But an assumption was made in order to complete the expla- 
nation. An action precondition of ingest states that it is possible to ingest 
something if one has it first. It was not stated in the input whether Mary had 
possession of the meal, but the abduction engine assumed that she did.” 

3.2 An Explanation for Happy-For 
This example illustrates the fortunes-of-others emotion, happy-for: 

Mary’s roommate is going to Europe. 
Mary is happy for her. 

Here, Mary’s roommate is going to Europe and thus Mary is happy for 
her. The explanation constructed by the abduction engine is shown in 
Figure 4. The first reason translates the emotion to be explained into joy 
over another’s joy. The explanation states that Mary is happy for her because 
she will be happy in Europe and Mary wants her roommate to be happy 
because she likes her. In the construction of this part of the explanation, a 
new query is generated in an effort to explain Mary’s roommate’s joyful 
reaction to being in Europe. The query is initially in the form: 

hoMs(joy(roommate(mary), at(roommate(mary), europe), s2), ~1); 

but this is immediately simplified, using rewrite rules mapping fluents into a 
canonical form (Section 2.4), to strip off a superfluous holds predicate and 
an unnecessary situation 81: 

joy(roommate(mary), at(roommate(mary), europe), ~2). 

This simplified version of the query invokes the emotion eliciting rule for 
joy producing the explanation shown. 

Note that the predicate d-likes is to be interpreted as dispositional liking 
as opposed to momentary liking. Also, it is assumed that Mary likes her 
roommate.” Her roommate will be happy in Europe because she is there, 
assuming that she wants to be there. She will be in Europe as a result of 
going there. 

3.3 An Explanation for Gloating 
In our third example (Figure 5), the parenthetical comments were not 
encoded, but they are included to retain fidelity to the original report from 
the diary study: 

‘I See Section 4.1 for a discussion of several issues associated with the abductive inference 
of preconditions. 

‘* This is an example where an operational predicate (dispositional liking) is assumed in 
spite of the fact that an attempt to prove it fails because there is nothing in the list of known 
facts about whether Mary likes her roommate. 
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John heard one of the guys who lived below him throwing up 
(the morning after a party). 
(The guy got what he deserved.) 
John gloated. 

The explanation illustrating explanatory reasoning involved gloating shown 
in Figure 5 states that John gloats over his neighbor’s retching because John 
takes pleasure in his neighbor’s distress. The system is forced to assume that 
John wanted his neighbor to experience distress. John’s neighbor felt 
distress over vomiting because it is an undesirable event. Deeper inferences 
might explain how this unpleasant action occurred. These would require 
additional causal connections (e.g., between the party, excessive drinking, 
and retching). Another line of inference currently outside the scope of our 
implementation is: John may wish his neighbor ill because the neighbor’s 
party had been noisy and disturbed John. This explanation would require 
the addition of knowledge about parties and noise, and about needs 
associated with sleep. 

3.4 Explanations for Relief and Fear 
The following case provides examples of relief and fear: 

Mary wanted to go to sleep. 
Karen returned. 
T. C. finally left her place. 
Mary was relieved. 

The case is encoded as shown in Figure 6. The case facts say Mary wants 
sleep. The query asks why Mary is relieved that T.C. is not at her home in 
the situation that results after T.C.‘s departure. T.C.‘s departure occurred 
in the situation resulting from Karen’s return. 

The automaticaIly constructed expl~ation assumes that Mary fears 
T.C.‘s presence in her home because she does not want T.C. to be in her 
home but she anticipates that he will be there. A deeper explanation 
connecting this desire and anticipation to Mary’s desire for restful sleep 
should be possible. For example, the presence of T.C. might interfere with 
Mary’s sleep. 

The explanation in Figure 6 states that Mary is relieved because T.C. is 
no longer at her home. The explanation of his absence does not include the 
possibility that he may have been driven away by Karen’s return. But it is in- 
teresting for another reason. It illustrates the use of causal Iaws to infer 
negative fluents relevant to emotional reactions. In this case, because T.C. 
moved from Mary’s home to another location, he is no longer at Mary’s 
home. 
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3.5 An Explanation for Anger 
The following example, based on a diary study case involving a dating 
scenario, illustrates the angry-at emotion type. The example involves the 
breakup of a couple of college students, Kim and John: 

Kim wanted to break up with John. 
John didn’t want to break up with Kim. 
They broke up. 
John is angry at Kim. 

The example is encoded as shown in Figure 7. The query encodes the question 
“Why is John angry with Kim over the breakup?” The explanation states 
that John is angry with Kim because Kim initiated the breakup and it caused 
John to be single. The fact that John doesn’t want to be single was given but 
the remainder of the explanation involves two assumptions. The first is that 
Kim and John were a couple prior to the breakup. The second assumption is 
that John views Kim’s breaking up with him to be blameworthy. 

4. DISCUSSION 

The previous sections described a representation for knowledge about emo- 
tion elicitation and a computer program that constructs explanations based 
on cases taken from a diary study about emotion episodes. In this section, 
we discuss some of the strengths and weaknesses of our explanatory 
reasoner and our representation of knowledge about emotion elicitation. 

4.1 Advantages of Abductive Reasoning about Emotions 
We claim that abduction is superior to deduction as a basis for explanatory 
reasoning about emotions because it subsumes deduction which, on its own, 
will fail when a proof cannot be derived from a given set of facts. The 
primary advantage of abduction is that it allows for the possibility that 
assumptions may be required to complete explanations, so that an explana- 
tion of a given observation can be proposed even when it does not follow 
logically from given facts. 

It is unreasonable to expect all the information needed to construct ex- 
planations involving emotions to be provided in advance. It is particularly 
unlikely that all the relevant information about mental states will be pro- 
vided. Indeed, we would like to acquire this sort of information by infer- 
ence, and abductive inference allows us to do so during the construction of 
explanations. Abduction may be viewed as a search for plausible hypotheses 
that help explain observations. 

The majority of the cases in the diary study data require assumptions. In 
this regard, the examples that we have discussed are representative. The 
kinds of assumptions needed included missing preconditions, goals, pros- 
pects, and judgments. 
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Examples of preconditions inferred by abductive inference included the 
following. In the example of joy (Section 3.1) the explanation was com- 
pleted with an assumption that Mary had possession of a home-cooked 
meal. This explained how it was possible for her to ingest it. In the example 
of gloating (Section 3.3) it was assumed that it was possible for John’s 
neighbor to vomit. In Section 3.5 it was assumed that Kim and John were a 
couple before she broke up with John and he became angry.13 

Examples of abductive assumptions about goals occur frequently. The 
example in Section 3.4 required an assumption that Mary wanted T.C. to go 
somewhere else in order to explain Mary’s fear that T.C. would be at her 
home. Assumptions about others’ goals occur in explaining fortunes-of- 
others emotions. In the example for happyfor (Section 3.2), an assump- 
tion was made about Mary’s roommate’s desire to be in Europe. The exam- 
ple of gloating (Section 3.3) required an assumption that John wanted his 
neighbor to be distressed. 

Abductive assumptions about other mental states include assumptions 
about whether agents anticipate events, In the example of relief (Section 
3.4), it was necessary to assume that Mary anticipated T.C.‘s continued 
(unwelcome) presence in her home. 

Assumptions about judgments of blameworthiness and praiseworthiness 
are impo~ant in explaining attribution emotions and compound emotions. 
For example, in the anger case, the assumption that Kim’s breaking up with 
John was blameworthy was made in order to explain why John was angry 
at Kim. 

None of the explanations constructed in these examples could have been 
constructed by the abduction engine without its abductive inference 
capability, given the background knowledge and codifications of the cases 
provided with the observations to be explained. Given the same informa- 
tion, a purely deductive PROLOG-style interpreter would have failed to 
find an explanation. 

Admittedly, the knowledge base could conceivably be extended so that 
some assumptions could be eliminated and replaced by deductive infer- 
ences. Knowledge of ethics and standards of behavior could be provided, 
reducing the number of assumptions in explanations requiring judgments of 
blameworthiness and praiseworthiness. Some additional inferences could be 
made deductively, rather than abductively. For example, we saw several in- 
stances of necessary preconditions in the emotion cases: It is necessary for 

I3 The reader may wonder how it is possible to make these assumptions given that the 
abduction engine is not allowed to assume that an arbitrary fluent might be a precondition for 
anaction (Section 2.4). The reason is that assumptions of the formpreconditions(A, F) are pro- 
hibited, whereas assumptions of the form holds(F, S) are permitted. In other words, we allow a 
conjecture that a condition is true in a given situation but we disallow a conjecture that the con- 
dition is a precondition of an action. 
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two people to form a couple in order to break up, it is necessary to have 
food prior to eating it, and so on. If we provide the reasoning system with 
facts stating that such preconditions are necessary, it should be possible to 
replace these abductive inferences with deductive inferences. 

This is special case of a more general idea. Recent research on the relation- 
ship between abduction and other forms of reasoning shows that there is a 
close relationship between abduction and an alternative deductive approach 
based on closure and minimization (Konolige, 1992). It is possible to trans- 
late abduction into the alternative approach by rewriting a logical theory 
and adding “closure statements,” for example, statements to the effect that 
the known causes or preconditions are the only ones. This is obviously 
appropriate if the known preconditions are necessary and not just suffi- 
cient. However, it is not likely that all relevant preconditions, causes, 
desires, prospects, and judgments can be provided in advance. 

The abductive approach is well suited to the domain of emotion-relevant 
reasoning because it does not require complete knowledge of causation, and 
causal closures need not be computed and asserted. The ability to generate 
hypotheses and make assumptions 

. that implicit preconditions held in an effort to explain how an action 
led to an effect, 

l that agents had certain desires in order to explain their emotional reac- 
tions or actions, 

. that agents anticipated certain events in order to explain emotional 
reactions, and 

l that actions are considered praiseworthy or blameworthy on the basis 
of emotional reactions to those actions 

gives abduction advantages that are important for explanatory reasoning 
about emotions. 

4.2 The Problem of Evaluating Explanations 
The most important limitation of the method implemented here is that it 
does not address questions associated with evaluating the plausibility of 
multiple explanations. Such questions include the following: 

How can one avoid a combinatorial explosion of explanations, many of 
which are completely implausible? Evaluation of plausibility cannot wait 
until all possible explanations have been produced. Sometimes in~nitely 
many explanations are possible, so some evaluation must be done during ex- 
planation construction. 

The machine-generated explanations we have presented here were gener- 
ated using depth-first search. Most were the first acceptable explanations 
generated but, in some cases, the initial explanations were rejected by the 
user. Alternative explanations for a given example are often compatible 
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but, in general, alternate explanations will include mutually inconsistent 
competitors. This raises the question of how one should decide what to 
believe and what to disbelieve when conflicts arise between alternate ex- 
planations? Methods for weighing the evidence would help decide which ex- 
planation is more plausible in many cases. But in other cases, it might be 
prudent to delay making a decision (Josephson, 1990). Or one could take 
some action aimed at acquiring new information that might help resolve the 
conflict. 

Finally, how should one decide when to assume a hypothesis that would 
explain given observations? Currently, we rely on simple heuristics that 
specify inadmissible assumptions (see Section 2.4). After applying these 
heuristics, the abduction engine falls back on the user. The user is asked to 
validate each assumption and to accept each explanation. If the user rejects 
an assumption or explanation, backtracking occurs and the abduction 
engine seeks the next alternative. 

4.3 Advantages of the Situation Calculus for Emotions 
In this section, we list some desiderata for representations of theories of the 
cognitive structure of emotions. We show how the features of our situation 
calculus representation address goals relevant to representing and reasoning 
about emotion elicitation. 

One of the most basic tenets of the theory of emotions sketched in Sec- 
tion 1.2 is the view that emotions are positively or negatively valenced reac- 
tions. Each emotion is paired with an emotion with a complementary 
valence. In addition, pairs of opposing extrinsic predicates play an impor- 
tant role in reasoning about emotions. For example, the opposing predicates 
praiseworthy and blameworthy play a crucial role in the emotion theory. 
Negations and opposites are important in the emotion-eliciting conditions. 
Our representation language provides support for these aspects of the 
theory by allowing for both positive and negative fluents and actions. 

The situation calculus account for actions captures important causal in- 
formation clearly needed in constructing explanations involving emotions. 
Situation calculus provides for a causal theory of actions that includes both 
positive and negative effects and preconditions. Emotion types (represented 
as fluents) are not caused directly by actions, in the sense that they do not 
appear as direct effects encoded in causes statements. Instead, they are 
caused indirectly; the theory specifies eliciting conditions that contain ac- 
tions and other fluents. We saw several instances of actions causing effects 
that resulted in emotional reactions. In the first emotion example, Mary was 
happy to be at home. The fact that she was at home was caused by the fact 
that she went there. This is an instance of a positive effect ofptrans. We saw 
an example of a negative consequence of an action engendering an emo- 
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tional reaction in the case of Mary’s relief when T.C. vacated her home. 
Given that T.C. moved to another location, a negative effect was used to in- 
fer (and explain) the fact that T.C. was no longer at Mary’s home. 

Frame axioms capture the notion that fluents persist unless explicitly 
altered by actions. The emotion-eliciting conditions use this to advantage: 
They do not require fluents to be caused by the action most recently exe- 
cuted. Frame axioms are employed to propagate fluents caused by one action 
through successive actions into later states (provided they are not canceled 
by intervening actions). In the initial example, the reason Mary is at home is 
that she went there earlier and the fact that she ingested a meal did nothing 
to cancel this result. 

Many examples of emotional reactions defined in the emotion-elicitation 
rules in terms of fluents are naturally expressed as responses to actions or 
other events.14 Consider the example of gloating. John’s unfortunate neigh- 
bor vomited. The ejection of contents of the neighbor’s stomach through 
his mouth resulted in a relocation of said contents. But John’s neighbor’s 
distress was in reaction to his vomiting rather than its effect (the new loca- 
tion of the contents of his stomach). The function did provides us with 
fluents that enable us to refer to actions when we wish to focus on the action 
itself rather than on a specific effect of the action. 

Chains of emotional reactions occur frequently. Our representation pro- 
vides for such chains because emotions are represented as fluents that take 
fluents as arguments and because fluents appear in the elicting conditions of 
emotions. Like other fortunes-of-others emotions, happy-for is an emo- 
tional chain reaction. Fortunes-of-others emotions are reactions to events, 
but instead of focusing exclusively on the event, they also focus on 
another’s emotional reaction to that event. In the example of happy-for, 
the fact that Mary’s roommate was going to Europe was not so important to 
Mary as her roommate’s happiness. Mary’s roommate’s joy engenders 
Mary’s joy. 

Goals play a large role in emotion elicitation. Our representation sup- 
ports reasoning about goals in constructing explanations involving emo- 
tions. (See Section 2.1.) A good example of reasoning about chains of 
desires occurs in a case involving John’s gratification over a high score on the 
graduate record examination (GRE). In that example, the system is “told” 
that John wants to be enrolled in grad school. John’s gratification is ex- 
plained in terms of his desire to be admitted to graduate school. The rules 
for desires are used to infer that John wants to be admitted because this is a 
precondition of matriculation and matriculation results in achievement of 
enrollment. 

” In fact (as discussed in Section 2.3) the original informal theory defined emotion types 
in terms of events rather than fluents. 
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Situation calculus provides support for temporal reasoning. A situation 

do&, do@+ I,. . . ,do(al, so)11 

defines a temporal sequence of situations, so, si, _ . .s, where for i= 1 to n, 
si = do(ai, si- 1) and si- 1 precedes si. Temporal precedence is used in eliciting 
conditions for the prospect-based emotions, sutkfied, fears_confirmed, 
relieved, and disappointed. These emotions are reactions to the confirma- 
tion or disconfirmation of a hoped-for or feared fluent. The precedence 
constraints apply when the relevant fluents are hoped-for or feared in a 
situation prior to confirmation or disconfirmation. The compound emo- 
tions grateful, angry-at, gratified, and remorseful also employ temporal 
constraints. Each of these emotions is a reaction to an action and a fluent 
caused by the action Two situations are relevant in these emotion types, the 
situation when the action causes the fluent, and the ensuing situation 
associated with the emotional reaction to the fluent. The eliciting conditions 
use the predicate precedes to ensure that the temporal precedence constraint 
between these situations is satisfied. We saw examples in the cases involving 
anger (Section 3.9, and relief (Section 3.4). In the situation prior to his 
leaving, Mary feared that T.C. would be at her home. She experienced relief 
after he left,15. 

Note that the situation calculus does not force a temporal ordering on all 
events. This is an advantage in the context of emotions. In the eliciting con- 
ditions of happy-for, there is no time constraint between the situations 
when the two agents are happy. In the case of happy-for (Section 3.2), 
Mary’s roommate’s emotional reaction and Mary’s reaction are allowed to 
occur in different situations. Using separate situations is useful, for exam- 
ple, if some interve~ng action results in someone being informed of 
another’s earlier good fortune. Avoiding temporal contraints on the situa- 
tions is also useful because in some cases the usual temporal order is re- 
versed. For example, one might be happy for another in anticipation of the 
other’s happiness (e.g., upon learning that the other won a lottery even 
before the lucky winner knew it). 

4.4 Limitations of the Situation Calculus of Emotion Elicitation 
In this section, we discuss the main limitations of the situation calculus of 
emotion elicitation. These include limitations inherent in the situation 
calculus itself and limitations in the theory of emotion elicitation. 

A major limitation of this study is that we did not attempt to represent or 
reason about intensities of emotions. It is important to extend the represen- 

” As discussed in Section 2.3, in some cases of relief and disappointment, the attendant 
fears and hopes violate the constraint requiring them to occur prior to the relief and disap- 
pointment. Additional eliciting conditions allow for this, but because it is the exception rather 
than the rule, priority is given to the interpretation that includes the temporal constraint. 
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tation presented here to include intensities. Many emotion types are 
represented in natural language by a number of emotion tokens. Many 
tokens indicate specific relative intensities of a particular emotion type; for 
example, “annoyance, ” “exasperation,” and “rage” denote increasingly 
intense subtypes of anger. Ortony et al., (1988) suggested that emotions only 
occur when their intensities are driven above thresholds. The approach 
taken here is to use predicates that are true or false in place of these con- 
tinuous, real-valued variables. This approach may be viewed as a crude first 
approximation. We speculate that methods developed in AI research on 
qualitative reasoning about physical systems (e.g., Forbus, 1984; Kuipers, 
1986; Weld & de Kleer, 1990) could be applied to the prcslem of represent- 
ing and reasoning about intensities of emotions. 

Another limitation of the emotion-eliciting conditions is that they are 
phrased in terms of facts rather than beliefs. This is because we wanted to 
avoid having to reason about beliefs and knowledge. But such reasoning is 
clearly relevant to emotions. Consider the eliciting condition for satisfac- 
tion. It states that a person is satisfied if the person hoped for a fluent 
earlier and now it holds. It seems clear that the eliciting condition is too sim- 
ple. It should be phrased in terms of the person’s epistemic state. For exam- 
ple, the rule for satisfaction might be rewritten: A person may be satisfied if 
that person believes that some hoped for fluent holds. Logics of belief and 
knowledge should help address such issues, but they are beset with their own 
complexities (e.g., referential opacity, computational intractability) and 
they might introduce more problems than so1utions.‘6 

The most important difficulty for the situation calculus underlying our 
representation is the famous qualification problem (McCarthy, 1977). The 
problem is that it is difficult, if not impossible, to specify all the precondi- 
tions relevant to the successful execution of an action. We do allow assump- 
tions about the possibility of actions, which means that we can explain how 
an action occurred without knowing all the preconditions that might have 
made it possible. At present, we do not attempt explanations of inaction, so 
we do not have to deal with the difficult problem of inferring preconditions 
that failed, thus preventing an action from occurring. We do not claim to 
have solved the qualification problem but we believe our representation and 
reasoning methods are no more limited by it than are other approaches. 

Some examples in the diary study are beyond the scope of our current 
methods because they require reasoning about actions not taken and the 
resulting negative effects. In one case, a woman’s roommate fails to pay 
their phone bill. This triggers anger and fear. She is afraid that she will get a 
bad credit rating and that her phone will be disconnected. In another exam- 
ple, a student expresses anger because his mother failed to send his records 

I6 For examples of AI approaches to the difficult problems of reasoning about belief, 
knowledge, and action, see Konolige (1985) and Moore (1985). 
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to a dentist and he can’t get his teeth cleaned without them, Several cases in- 
volve students worrying about poor grades caused by not studying for ex- 
aminations. The general principle in these examples is that the failure to do 
an action can often be said to be the reason that an effect does not hold. If 
we could capture this intuition in a “causal law of non-action” we would 
have something of direct importance for the att~bution emotions because 
they often involve attributing praiseworthiness or blameworthiness to non- 
action. Such a law would also have indirect impacts, by combining with 
existing laws such as the rules for indirect goals, for example, to capture the 
idea that one may not want an action to be done if it causes an undesirable 
effect. The current situation calculus does not cover such cases because it 
says little about negative actions. 

Time is import~t in reasoning about many emotions, especially the 
prospect-based emotions hope, satis~uction, relief, fear, bears-confirmed, 
and disappointment. Our situation calculus deals with temporal precedence 
but ignores all other temporal relationships such as simultaneity. In the 
situation calculus, information is stored in an initial state and then pro- 
pagated to later states via frame axioms. This is ‘a problem in reasoning 
about emotional reactions to ongoing events. For example, a woman can be 
grateful to her husband for giving her a massage while he is giving it to her, 
but limitations of the situation calculus prevent a formulation of the elicit- 
ing conditions for gratitude during an ongoing action. The use of represen- 
tation and reasoning methods suggested by Allen (1981) might help address 
this limitation. 

Actions are viewed as discrete, opaque transitions. Situation calculus 
provides no tools for describing what happens while an action is in progress; 
it provides no tools for describing continuous processes like the gradual 
dissipation of anger. Again, representation and reasoning techniques 
developed in research on qualitative physics (e.g., Bobrow, 1985; Hobbs & 
Moore, 1985) might help overcome this limitation. 

Strict logical implication often fails to capture the reality of relationships 
among events, actions, and possible effects. Many contributions of actions 
toward the achievement of goals involved in examples drawn from the diary 
study are uncertain in the sense that the action is not guaranteed to achieve 
the goal. Often, actions facilitate or increase the probability that the goal 
will be achieved. Several examples in the case study data describe student’s 
emotional reactions to the granting of extensions on due dates of assign- 
ments. Besides temporal reasoning, these examples require probabilistic 
reasoning, in the sense that the granting of extensions increases the likeli- 
hood of successful completion of projects. Instead of encoding these weak 
causal relationships as implications, qualitative representations of condi- 
tional probabilities could be associated with cause-effect relationships. 
Plausibility information such as probabilities could enter more directly into 
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the eliciting conditions of several emotions. In particular, the hopes and 
fears emotion types depend on entertaining the possibility that the hoped- 
for or feared fluent will occur. The intensity of hope or fear (and its 
plausibility) depends in part on the subjective likelihood of the prospective 
event (Ortony et al., 1988). 

5. RELATED AND FUTURE WORK 

A similar approach to formalizing commonsense reasoning about emotions 
is presented in Sanders (1989). However, that work takes a deductive ap- 
proach, using a deontic logic of emotions. The logic focuses on a cluster of 
emotions involving evaluations of actions-including what we have called 
admiration, reproach, remorse, and anger. The evaluation of actions is 
ethical, and involves reasoning about obligation, prohibition, and permis- 
sion. The logic was used to solve problems involving actions associated with 
ownership and possession of property (e.g., giving, lending, buying, and 
stealing) by proving theorems. For example, the fact that Jack will be angry 
was proved given the following: 

Jack went to the supermarket. 
He parked his car in a legal parking place. 
When he came out, it was gone. 

It is not clear whetheer the theorems were proved automatically or by hand, 
so questions of complexity of inference and control of search in the deontic 
logic remain unanswered. We have argued that abduction offers advantages 
over deduction alone when applied to the task of constructing explanations 
involving emotions. Furthermore, our situation calculus of emotion elicita- 
tion is more comprehensive than the deontic logic for emotions in that it 
covers more emotion types. But our approach could benefit from the treat- 
ment of ethical evaluations. A detailed comparison and integration of the 
best parts of the two approaches would be worthwhile. 

A number of theories of the cognitive determinants of emotions exist 
(e.g., Roseman, 1984). In principle, situation calculus could be used to 
codify these alternative theories. The abductive method we propose for 
explanatory reasoning about emotions does not depend on the particular 
emotion theory used. 

Recent research on abduction addresses the issues of search control and 
plausibility mentioned earlier. Stickel (Hobbs, Stickel, Appelt, & Martin, 
1993; Hobbs, Stickel, Martin, & Edwards, 1988) has suggested a heuristic 
approach for evaluating explanations in the context of natural language pro- 
cessing. Subsequent work by Charniak and Shimony (1990) gave Stickel’s 
weighted abduction a probabilistic semantics. Still more recent work (Poole, 
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1991) incorporates probability directly into a logic-based approach to abduc- 
tion. These methods promise to provide significantly improved abduction 
engines that could be used to construct explanations involving emotions, 
taking plausibility into account. 

Related work on natural language comprehe~ion (Dyer, 1983a, 1983b; 
Lehnert, 1981) argues that emotion words occur frequently in natural lan- 
guage discourse because emotions play a substantial role in our lives. 
Natural language systems encountering text involving emotions will need to 
identify and reason about emotions felt by characters in the text. Important 
subtasks involved in comprehension such as motivation analysis and plan 
recognition will often require reasoning about emotions (Charniak & 
McDermott, 1986). 

This work focuses on explaining emotions in terms of eliciting situations. 
But, although situations give rise to emotional reactions, emotions in turn 
give rise to goals and actions that change the state of the world. Applica- 
tions such as plan recognition will require the representation of knowledge 
for causal connections between emotions and subsequent actions. For a 
brief description of a system for recognizing plans involving emotions, see 
Cain, O’Rorke, and Ortony (1989). Cain et al. also described how explana- 
tion-based learning techniques can be used to learn to recognize such plans. 
For a fuller discussion of reasoning about emotion-induced actions, see 
Elliott and Ortony (1992). 

This work is based upon a collection of 22 emotion types. In Ortony, 
Clore, and Foss (1987) about 270 English words are identified as referring 
to genuine emotions from an initial pool of 600 words that frequently ap- 
pear in the emotion research literature. In another study, 130 of these emo- 
tion words were distributed among the 22 emotion types discussed here. 
Some emotion words map to several different types, for example, “upset” is 
compatible with at least mgry_at, distress, and skanze. In addition, many 
words map to the same type. Encoding the relationship between the affective 
lexicon and the emotion types is an important topic for future research aimed 
at automatically processing natural language text involving emotions. 

Lehnert (1981) argued that it is important to embed a proposed method 
for representing and reasoning about affect into a larger information- 
processing system so that the method can be evaluated in terms of the effec- 
tiveness of the larger system. We have done this, in a limited sense, by 
embedding our situation calculus of emotion elicitation into an abductive 
reasoning system. However, it is still desirable to incorporate our method 
into a narrative understanding system comparable to BORIS (Dyer, 1983a). 
One way to do this would be to embed the system we describe here in 
TACITUS, a natural language processing system that uses abduction as the 
basis for comprehension (Hobbs et al., 1993). 
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6. CONCLUSION 

We have presented a representation of a theory of the cognitive antecedents 
of emotions and we have described an abductive method for explaining 
emotional states. We sketched a computer program, an abduction engine 
implements in a program called AbMaL, that uses the theory of emotion 
elicitation to construct explanations of emotions. We presented explanations 
of examples based on cases taken from a diary study of emotions. We ex- 
amined the strengths and weaknesses of both the representation of knowl- 
edge of eliciting conditions and the method for constructing explanations. 

The most important advantage of our approach to explanatory reasoning 
about emotions is that abduction allows us to construct explanations by 
generating hypotheses that filis gaps in the knowledge associated with cases 
where deduction fails. We found that the majority of the diary study ex- 
amples could not be explained using deduction alone because they do not 
follow logically from the given facts. The abduction engine explained the 
emotions involved in these cases by making assumptions including valuable 
inferences about mental states such as desires, expectations, and the emo- 
tions of others. 
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